
 

CALCULUS I: 

COURSE DESCRIPTION: 

Prerequisites: MAT 172; minimum grade of “C” 

Corequisites: None 

This course is designed to develop the topics of differential and integral calculus. Emphasis is 

placed on limits, continuity, derivatives and integrals of algebraic and transcendental functions of 

one variable. Upon completion, students should be able to select and use appropriate models and 

techniques for finding solutions to derivative-related problems with and without technology. 

Students may not receive credit for both MAT 263 and MAT 271. Course Hours per Week: 

Class, 3. Lab, 2. Semester Hours Credit, 4. 

This is a Universal General Education Transfer Component (UGETC) course 

LEARNING OUTCOMES: 

1. Apply the definition of limit to evaluate limits by multiple methods and use it to derive the 

definition and rules for differentiation and integration. 



2. Use derivatives to analyze and graph algebraic and transcendental functions. 

3. Select and apply appropriate models and differentiation techniques to solve problems 

involving algebraic and transcendental functions; these problems will include but are not 

limited to applications involving optimization and related rates. 

4. Apply the definition of indefinite integral to solve basic differential equations. 

5. Apply the definition of definite integral to evaluate basic integrals. 

6. Use the fundamental theorem of calculus to evaluate integrals involving algebraic and 

transcendental functions. 

OUTLINE OF INSTRUCTION: 

I. Limits and Derivatives 

A. The Tangent and Velocity Problems 

B. The Limit of a Function 

C. Calculating Limits Using the Limit Laws 

D. The Definition of a Limit 

E. Continuity 

F. Limits at Infinity; Horizontal Asymptotes 

G. Derivatives and Rates of Change 

H. The Derivative as a Function 
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II. Differentiation Rules 

A. Derivatives of Polynomials and Exponential Functions 

B. The Product and Quotient Rules 

C. Derivatives of Trigonometric Functions 

D. The Chain Rule 

E. Implicit Differentiation 



F. Derivatives of Logarithmic Functions 

G. Rates of Change in the Natural and Social Sciences 

H. Hyperbolic Functions 

III. Applications of Differentiation 

A. Related Rates 

B. Linear Approximations and Differentials 

C. Maximum and Minimum Values 

D. The Mean Value Theorem 

E. How Derivatives Affect the Shape of a Graph 

F. Curve Sketching 

G. Optimization Problems 

IV. Integrals 

A. Antiderivatives 

B. Areas and Distances 

C. The Definite Integral 

D. The Fundamental Theorem of Calculus 

E. Logarithm Defined as an Integral 

F. Indefinite Integrals and the Net Change Theorem 

G. The Substitution Rule 

REQUIRED TEXTBOOK AND MATERIALS: 

Stewart, James. Calculus: Early Transcendentals. 8th ed. Brooks/Cole, Cengage Learning 2012. 

TI-83/84 Graphing Calculator  

 

Foundations of Mathematics: 

Course Description: 



This course is designed to meet the needs of the student who has an average 

background in basic mathematics, yet presents a reasonable level of abstraction for 

Algebraic relations, functions, and mathematical sentences, from simple expressions 

to linear equations, to general equations, involving absolute value, exponents, and 

radicals. Students are admitted to this class by teacher recommendation only. 

Prerequisite & Course Information: 

Geometry, teacher recommendation 

1 year course, open to grade 11 

Course Outline Topics: 

Arithmetic computations involving whole numbers, fractions, and percents. 

Occupational word problems will be stressed. 

*Topics will be modified when necessary 

Grade Determination: 

40% Test 

40% Homework 

20% Quiz 

Expectations: 

Bring your book, pencil, paper, and laptop to class. 

Expect to have a weekly quiz. 

Tests will be given at the end of each chapter. 

Finals must be taken. 

 

FOUNDATIONS of COMPUTER PROGRAMMING 

Course Aims 

• Introducing the main cultural and methodological foundations of computer programming. 



• Understanding the nature, potentials and limits of programming. 

• Developing basic problem solving and operational skills for programming in-the-small. 

• Learning how to apply basics concepts in the functional, imperative and object-oriented paradigms in 

order to solve simple problems. 

• Understanding the logical properties characterizing the correct behaviour of a program. 

• Understanding some basic concepts of data abstraction and object-oriented programming. 

Course Organization 

The course focus is on the main forms of abstraction to cope with problem complexity: procedural 

abstraction, 

data abstraction, and abstraction of state. The procedural and data abstraction are introduced through 

suitable 

examples from a functional perspective; the abstraction of state from an imperative and object-oriented 

perspective. The laboratory sessions are aimed at developing and experimenting with programs that 

apply the 

techniques presented in the theoretical lessons. 

The course is based on a functional-first approach (IEEE-CS/ACM Computing Curricula 2001). 

Prerequisites: 

High school mathematics. 

Course Syllabus 

Part I - Procedural abstraction (Scheme) 

Numerical and non-numerical expressions. Functional approach: procedural abstraction. Simple- (if) and 

multiple-choice (cond) constructs. Numerical, boolean, character and string values. Recursive 

procedures. Wellfounded 

recursive definitions. Evaluation model via substitution and reduction. Let construct. General and tail 

recursion. Tree recursion and computational complexity. Correctness of recursive programs: proof by 

induction. 

Higher order procedures. 



Part II - Data abstraction (Scheme) 

Simple data abstractions. Examples of linear and tree data structures: traversal and search algorithms, 

applications. Algorithms and computational costs. Different implementations of abstract data types. 

Data 

structures from the user’s (protocol/interface) vs. the implementor’s viewpoint (behavior). 

Part III - Abstraction of state (Scheme and Java) 

Concept of state and imperative paradigm. Basic statements and constructs of the Java language. Arrays 

and 

array operations. Data structures and imperative approach. Top-down (memoization) and bottom-up 

dynamic 

programming. Functional vs. imperative approach. State abstraction: concepts of class, object, 

constructor and 

method. Encapsulation and information-hiding in the object-oriented approach. Computational costs. 

Examples 

of implementation of dynamic data structures in Java. Verification of correctness: Assertions, loop 

invariants 

and termination functions. 

Recurrent Concepts: Procedural abstraction; computational model; recursive approach; tail recursion; 

tree 

recursion; imperative approach; iteration; algorithm; computational complexity; preconditions and 

postconditions; invariant; termination; data abstraction; state abstraction; object-oriented approach; 

protocol; 

object; data hiding; modular organization. 

Laboratory 

The laboratory sessions are about design, development and experimentation of small-scale programs; 

they are 

meant to stimulate students' organization skills as well as their ability to work autonomously. 

FOUNDATIONS of COMPUTER PROGRAMMING 

(teacher: Claudio Mirolo) 



Textbooks 

• Max Hailperin, Barbara Kaiser, Karl Knight 

Concrete Abstractions: An Introduction to Computer Science Using Scheme 

Brooks/Cole Publishing Company, 1999 (ISBN: 0-534-95211-9) 

• Robert Sedgewick, Kevin Wayne 

Introduction to Programming in Java 

Addison-Wesley, 2007 (ISBN: 0-321-49805-4) 

Exams 

Organization of the exams: 

• Two written tests, scheduled at the end of each semester; 

• A few simple laboratory assignments; 

• Oral discussion. 

 

Course Title: Calculus II: 

Credits: 4 Semester Hours 

Prerequisites: MAT 181: Calculus I or appropriate placement. 

Objectives: 

After successful completion of this course a students will be able to demonstrate: 

 Basic knowledge of the fundamental concepts behind definite and indefinite 

integration, i.e. Riemann Sums and the Fundamental Theorem of Calculus. 

 Procedural facility with the rules of integral calculus and with techniques for 

anti-differentiation. 

 Basic knowledge of numerical sequences and series including tests for 

convergence and methods of approximation of sums. 

 Basic knowledge of power and Taylor series including test for convergence 



and methods of approximation of sums. 

 An ability to use calculus to solve some basic applied problems. 

 An ability to use technological tools to represent some fundamental concepts 

of calculus and to solve basic problems of application. 

Course Description: 

Calculus II will introduce students to a variety of new techniques of integration, to 

some applications of integration, and to sequences and series. Students will be 

expected both to become proficient with basic skills and to demonstrate an 

understanding of the underlying principles of the subject. Students should expect to 

make appropriate use of technology in this course. Knowledge of Calculus I will be 

assumed, in particular knowledge of the rules and concepts behind differentiation 

and basic integration. Prerequisite: MAT 181: Calculus I or appropriate placement. 

Course Outline: 

I. Prerequisite Material (not covered or only briefly reviewed) 

a. Knowledge of functions: algebraic, transcendental, explicit, implicit, 

and parametric. 

b. An understanding of the concept of limits and continuity. 

c. Facility with the rules for differentiation. 

d. Definition of the definite integral as a limit of Riemann sums. 

e. Facility with basic rules for anti-differentiation. 

II. Requisite Material (core subjects necessary to the course) 

a. Integration 

i. Definite integral as a limit of Riemann Sums 

ii. Fundamental Theorem of Calculus 

iii. Techniques of Integration 



1. Integration by substitution 

2. Integration by parts 

iv. Applications of Integration 

1. Areas between curves 

2. Volumes by slicing and revolution 

v. Improper Integrals 

b. Sequences and series 

i. Basic introduction to sequences and the meaning of their 

convergence 

ii. Series 

1. Convergence in terms of sequences of partial sums 

2. Geometric series 

3. Convergence tests 

4. Alternating series 

c. Power and Taylor series 

i. Center and radius of convergence 

ii. Functions as infinite series 

iii. Approximating functions by Taylor Polynomials 

III. Additional Material (topics covered at the discretion of the instructor) 

a. Integration 

i. Techniques of Integration 

1. Use of tables of integration 

2. Integration by partial fraction decomposition 

3. Integration by trigonometric substitution 

4. Numerical approximations of the definite integral 



ii. Applications of Integration 

1. Arclength 

2. Work and center of mass 

3. Probability 

4. Economics 

b. Differential Equations 

i. Slope fields 

ii. Euler’s method 

iii. Separation of variables 

iv. General applications 

c. Series 

i. Introduction to Fourier Series 

ii. Errors in series approximations 

 

Linear Algebra:  

Course Description 

Foundations to Frontiers (LAFF) is packed full of challenging, rewarding material that is essential for 

mathematicians, engineers, scientists, and anyone working with large datasets. Students appreciate our 

unique approach to teaching linear algebra because: 

 

It’s visual. 

It connects hand calculations, mathematical abstractions, and computer programming. 

It illustrates the development of mathematical theory.  

It’s applicable. 

In this course, you will learn all the standard topics that are taught in typical undergraduate linear 

algebra courses all over the world, but using our unique method, you'll also get more! LAFF was 

developed following the syllabus of an introductory linear algebra course at The University of Texas at 



Austin taught by Professor Robert van de Geijn, an expert on high performance linear algebra libraries. 

Through short videos, exercises, visualizations, and programming assignments, you will study Vector and 

Matrix Operations, Linear Transformations, Solving Systems of Equations, Vector Spaces, Linear 

Least-Squares, and Eigenvalues and Eigenvectors. In addition, you will get a glimpse of cutting edge 

research on the development of linear algebra libraries, which are used throughout computational 

science. 

 

MATLAB licenses will be made available to the participants free of charge for the duration of the course. 

 

We invite you to LAFF with us! 

 

 See more about Linear Algebra - Foundations to Frontiers 

What you'll learn 

Connections between linear transformations, matrices, and systems of linear equations 

Partitioned matrices and characteristics of special matrices 

Algorithms for matrix computations and solving systems of equations 

Vector spaces, subspaces, and characterizations of linear independence 

Orthogonality, linear least-squares, eigenvalues and eigenvectors 

 Hide Course Syllabus 

 

Course Syllabus 

 

Skip Syllabus DescriptionWeek 0 Get ready, set, go! 

Week 1 Vectors in Linear Algebra 

Week 2 Linear Transformations and Matrices 

Week 3 Matrix-Vector Operations 

Week 4 From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 



Exam 1 

Week 5 Matrix-Matrix Multiplication 

Week 6 Gaussian Elimination 

Week 7 More Gaussian Elimination and Matrix Inversion 

Week 8 More on Matrix Inversion 

Exam 2  

Week 9 Vector Spaces 

Week 10 Vector Spaces, Orthogonality, and Linear Least Squares 

Week 11 Orthogonal Projection and Low Rank Approximation 

Week 12 Eigenvalues and Eigenvectors 

Final 

 

Advanced Programming: 

Course Contents3 Units 

The purpose of the course is to study the fundamental concepts and techniques necessary to write 

high-quality programs, including basic concepts of object-oriented programming, modular design, 

exception handling, and class libraries. Some advanced topics such as reflection, distributed 

programming, multi-threading, and GUI libraries are also covered. All of the mentioned concepts and 

techniques are studied using the Java language. It is important to note that this course is not a Java 

training course. The emphasis is on the concepts and techniques rather than the language itself. 

 

Prerequisites 

 

It is assumed that students are familiar with the following: 

 

At least one structured programming language such as Pascal or C. 

Basic data models: Linked Lists, Sets, Trees, and Graphs. 



Basic concepts of operating systems. 

Textbooks: 

Bruce Eckel, Thinking in Java, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2000. 

Harvey M. Deitel, and Paul J. Deitel, Java How to Program, 3rd ed., Prentice-Hall, Upper-saddle River, NJ, 

2001 

 

Foundation of Analysis: 

The course provides an opportunity for the development of theorem-proving skills in the field of 

mathematical analysis.  Expansion of a knowledge base comes as a by-product of energy expended in 

theorem proving and subsequent exposition.  Analysis topics included are: sets, functions, the real 

numbers, cardinality, induction, decimal representations of real numbers, Euclidean spaces, abstract 

vector spaces, and metric spaces. This is a communication-intensive course. 

 

Prerequisites/Corequisites: Prerequisite:  Mathematics major, Corequisite:  MATH 2010 or MATH 

2011 or permission of instructor. 

When Offered: Fall and spring terms annually. 

Credit Hours: 4 

 

Foundations of Combinatorics: 

Summary: This three semester topics course on combinatorics includes Enumeration, 

Graph theory, and Algebraic Combinatorics. Combinatorics has connections to 

all areas of mathematics and many other sciences including biology, physics, computer 

science, and chemistry. We have chosen core areas of study which should be relevant 

to a wide audience. The main distinction between this course and its undergraduate 

counterpart will be the pace and depth of coverage. In addition we will assume students 

have a basic knowledge of linear and abstract algebra. We will include many 

unsolved problems and directions for future research. The outline for each quarter is 



the following: 

(1) Enumeration: Every discrete process leads to questions of existence, enumeration 

and optimization. This is the foundation of combinatorics. In this quarter 

we will present the basic combinatorial objects and methods for counting various 

arrangements of these objects. 

(a) Basic counting methods. 

(b) Sets, multisets, permutations, and graphs. 

(c) Inclusion-exclusion. 

(d) Recurrence relations and integer sequences. 

(e) Generating functions. 

(f) Partially ordered sets. 

(g) Complexity Theory 

(2) Random Graphs, Random Groups: 

Fifty years ago Erd¨os and Renyi began the study of random graphs. They 

answered questions such as how many randomly chosen edges does a graph 

on 100 vertices need to have before it is connected. The field they developed 

was not only able to answer probabilistic questions, but also questions about 

the existence of certain types of graphs. More recently Gromov started asking 

similar questions about what does a random group looks like. He conjectured 

(and Ollivier proved) that a random group with high probability is either 

hyperbolic or trivial. 

In this class we will look at these two closely related fields. We will touch on 

many branches of mathematics including graph theory, probability, topology 

and geometric group theory. While all of these are useful, none of them are 

prerequisites. 



(3) Algebraic Combinatorics: The focus of this class will be on combinatorial Hopf 

algebras and diagram algebras. Diagram algebras/groups generalize the group 

algebra of the symmetric group where multiplication can be defined in term of 

concatenating string diagrams. Important examples include braid groups, the 

1 

2 

Braurer algebra, the Temperley-Lieb algebra, and topological quantum field 

theory on manifolds which appear in connection with knot theory. Combinatorial 

Hopf algebras have bases indexed by familiar objection in enumerative 

combinatorics. The primary example is the symmetric functions in a polynomial 

ring with n variables. This course will survey recent work on symmetric 

functions, quasisymmetric functions, noncommuting symmetric functions as 

Hopf algebras and related representation theory including 0-Hecke algebra 

representations. 

There is no text but resources include Vic Reiner’s notes on ”Hopf Algebras 

In Combinatorics”, Federico Ardila’s lectures on ”Hopf Algebras” and the 

book “Coxeter Groups and Hopf Algebras” by Marcelo Aguiar and Swapneel 

Mahajan. 

Course requirements: a strong background in algebra on par with our Math 

504/5/6 and basic enumerative combinatorics on par with 461/462. No prior 

knowledge of Hopf algebras will be assumed. 

Tentative Textbook Selection: Enumerative Combinatorics; Volume 1 

by Richard Stanley, Cambridge Studies in Advanced Mathematics, 49, 1997. 

(First quarter only). 

 



Data Structures and Algorithms: 

Catalog Description: Fundamental algorithms and data structures for implementation. Techniques for 

solving problems by programming. Linked lists, stacks, queues, directed graphs. Trees: representations, 

traversals. Searching (hashing, binary search trees, multiway trees). Garbage collection, memory 

management. Internal and external sorting. Intended for non-majors. Not open for credit to students 

who have completed CSE 332. Prerequisite: CSE 143. 

Prerequisites: CSE 143 

Credits: 4.0 

 

CALCULUS III: 

COURSE DESCRIPTION: 

Prerequisites: MAT 272; minimum grade of “C” 

Corequisites: None 

This course is designed to develop the topics of multivariate calculus. Emphasis is placed on 

multivariate functions, partial derivatives, multiple integration, solid analytical geometry, vector 

valued functions, and line and surface integrals. Upon completion, students should be able to 

select and use appropriate models and techniques for finding the solution to multivariate-related 

problems with and without technology. This course has been approved to satisfy the 

Comprehensive Articulation Agreement for the general education core requirement in natural 

sciences/mathematics. Course Hours Per Week: Class, 3. Lab, 2. Semester Hours Credit, 4. 

LEARNING OUTCOMES: 

1. Perform operations with vectors in two and three dimensional space and apply to analytic 

geometry 

2. Differentiate and integrate vector-valued functions and apply calculus to motion problems in 

two and three dimensional space 

3. Determine the limits, derivatives, gradients, and integrals of multivariate functions 

4. Solve problems in multiple integration using rectangular, cylindrical, and spherical coordinate 



systems 

5. Select and apply appropriate models and techniques to define and evaluate line and surface 

integrals; these techniques will include but are not limited to Green’s, Divergence, and 

Stoke’s theorems 

6. Demonstrate proficiency in using CAS technology to analyze, solve and interpret the various 

applications 

OUTLINE OF INSTRUCTION: 

I. Vectors and the Geometry of Space 

A. Three-Dimensional Coordinate Systems 

B. Vectors 

C. The Dot Product 

D.The Cross Product 

E. Equations of Lines and Planes 

F. Cylinders and Quadric Surfaces 
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II. Vector Functions 

A. Vector Functions and Space Curves 

B. Derivatives and Integrals of Vector Functions 

C. Arc Lengths and Curvature 

D. Motion in Space: Velocity and Acceleration 

III. Partial Derivatives 

A. Functions of Several Variables 

B. Limits and Continuity 

C. Partial Derivatives 

D.Tangent Planes and Linear Approximations 



E. The Chain Rule 

F. Directional Derivatives and the Gradient Vector 

G. Maximum and Minimum Values 

H.Lagrange Multipliers 

IV. Multiple Integrals 

A. Double Integrals Over Rectangles 

B. Iterated Integrals 

C. Double Integrals Over General Regions 

D. Double Integrals in Polar Coordinates 

E. Applications of Double Integrals 

F. Triple Integrals 

G.Triple Integrals in Cylindrical Coordinates 

H.Triple Integrals in Spherical Coordinates 

I. Change of Variables in Multiple Integrals 

V. Vector Calculus 

A. Vector Fields 

B. Line Integrals 

C. The Fundamental Theorem of Line Integrals 

D. Green’s Theorem 

E. Curl and Divergence 

F. Parametric Surfaces and Their Areas 

G. Surface Integrals 

H. Stokes Theorem 

I. The Divergence Theorem 

REQUIRED TEXTBOOK AND MATERIALS: 



Stewart, James. Calculus Early Transcendentals. 8 

th ed. Brooks/Cole, 2012 

TI-83/84 graphing calculator 

 

Principles of Operating Systems : 

Course description: Introduction to the fundamental principles of operating system design. The concepts 

and algorithms covered in the course are based on those used in both commercial and open-source 

operating systems. We present these concepts and algorithms in a general setting that is not tied to one 

particular operating system. However, we present a large number of examples that pertain to the most 

popular and the most innovative operating systems, including Linux, Microsoft Windows, Apple Mac, 

Solaris, Android and iOS. We also assign some simple coding labs to help students understand important 

knowledge and representative algorithms used in operating systems, such as CPU scheduling, 

synchronization and virtual memory. 

 

principles of computer systems: 

Summary 

This advanced graduate course focuses on key design principles underlying successful computer and 

communication systems, and teaches how to solve real problems using ideas, techniques, and 

algorithms from operating systems, networks, databases, programming languages, and computer 

architecture. 

Content 

A modern computer system spans many layers: applications, libraries, operating systems, networks, and 

hardware devices. Building a good system entails making the right trade-offs (e.g., between 

performance, durability, and correctness) and understanding emergent behaviors - the difference 

between great system designers and average ones is that the really good ones make these trade-offs in 

a principled fashion, not by trial-and-error. 

 

In this course we develop such a principled framework for system design, covering the following topics: 

 

Modularity, Abstraction, and Layering 

Indirection and Naming 



Locality 

End-to-end / State partitioning 

Virtualization 

Atomicity and Consistency 

Redundancy and Availability 

Interpretation, Simulation, Declarativity 

Laziness vs. Speculation 

CAP Theorem, DQ Principle, Harvest/Yield 

Least Privilege, Minimum TCB 

Learning Prerequisites 

Required courses 

Principles of Computer Systems (POCS) is targeted at students who wish to acquire a deep 

understanding of computer system design or pursue research in systems. It is an intellectually 

challenging, fast paced course, in which mere survival requires a solid background in operating systems, 

databases, networking, programming languages, and computer architecture. The basic courses on these 

topics teach how the elemental parts of modern systems work - POCS picks up where the basic courses 

leave off and focuses on how the pieces come together to form useful, efficient systems. To do well in 

POCS, a student must master the material of the following courses: 

 

COM-208 Computer networks 

CS-208 Computer architecture 

CS-210 Functional programming 

CS-305 Software engineering 

CS-322 Introduction to database systems 

CS-323 Operating systems 

Recommended courses 

The following EPFL courses cover material that significantly help students' understanding of POCS 

concepts; however, these courses are not strictly required: 



 

CS-320: Computer language processing 

CS-470: Advanced computer architecture 

CS-422: Database systems 

COM-407: TCP/IP networking 

Learning Outcomes 

By the end of the course, the student must be able to: 

Design computer and communication systems that work well 

Make design trade-offs (e.g., performance vs. correctness, latency vs. availability) 

Anticipate emergent system behaviors (e.g., failure cascades, security vulnerabilities) 

Integrate multiple techniques, ideas, and algorithms from different fields of computing/communication 

into a working system 

Teaching methods 

Online video lectures 

Ex cathedra 

Small-group discussions and exercises 

 

foundation of computing: 

This course presents some formal notations that are commonly used for the description of computation 

and of computing systems, for the specification of software and for mathematically rigorous arguments 

about program properties.  The following areas of study constitute the backbone of the course. 

Predicate calculus and natural deduction, inductive definitions of data types as a basis for recursive 

functions and structural induction, formal language theory (particularly regular expressions, finite state 

machines and context free grammars), and specification languages. 

Learning Outcomes 

Apply the concepts of standard mathematical logic to produce proofs or refutations of well-formed 

propositions or arguments phrased in English or in a variety of formal notations (first order logic, 

discrete mathematics or Hoare Logic). 



Given a description of a regular language, either in English, as a regular expression or as a grammar, 

generate a finite state automaton that recognizes that language. Similarly, given a deterministic or 

nondeterministic automaton, give a description of the language which it accepts. 

Given an inductive definition of a simple data structure, write a recursive definition of a given simple 

operation on data of that type. Given some such recursively defined operations, prove simple properties 

of these functions using the appropriate structural induction principle. 

Prove simple programs correct using Hoare Logic. 

Design a Turing Machine which will accomplish simple tasks. 

 

Database : 

Concepts :This course introduces database design and creation using a DBMS product. Emphasis is on 

data dictionaries, normalization, data integrity, data modeling, and creation of simple tables, queries, 

reports, and forms. Upon completion, students should be able to design and implement normalized 

database structures by creating simple database tables, queries, reports, and forms. 

 

Course Hours Per Week: Class, 2; Lab, 3 

Semester Hours Credit: 3 

Prerequisite: None 

Corequisite: None 

design and analysis of algorithms : 

Prerequisites:This course is the header course for the Theory of Computation concentration. You are 

expected, and strongly encouraged, to have taken: 

6.006 Introduction to Algorithms 

6.042J / 18.062J Mathematics for Computer Science 

Petitions for waivers will be considered by the course staff. Students will be responsible for material 

covered in prerequisites. 

Course Description:This course assumes that students know how to analyze simple algorithms and data 

structures from having taken 6.006. It introduces students to the design of computer algorithms, as well 

as analysis of sophisticated algorithms. 



Course Objectives 

Upon completion of this course, students will be able to do the following: 

Analyze the asymptotic performance of algorithms. 

Write rigorous correctness proofs for algorithms. 

Demonstrate a familiarity with major algorithms and data structures. 

Apply important algorithmic design paradigms and methods of analysis. 

Synthesize efficient algorithms in common engineering design situations. 

Course Outcomes 

Students who complete the course will have demonstrated the ability to do the following: 

Argue the correctness of algorithms using inductive proofs and invariants. 

Analyze worst-case running times of algorithms using asymptotic analysis. 

Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. 

Recite algorithms that employ this paradigm. Synthesize divide-and-conquer algorithms. Derive and 

solve recurrences describing the performance of divide-and-conquer algorithms. 

Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for 

it. Recite algorithms that employ this paradigm. Synthesize dynamic-programming algorithms, and 

analyze them. 

Describe the greedy paradigm and explain when an algorithmic design situation calls for it. Recite 

algorithms that employ this paradigm. Synthesize greedy algorithms, and analyze them. 

Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, 

when appropriate. Synthesize new graph algorithms and algorithms that employ graph computations as 

key components, and analyze them. 

Explain the different ways to analyze randomized algorithms (expected running time, probability of 

error). Recite algorithms that employ randomization. Explain the difference between a randomized 

algorithm and an algorithm with probabilistic inputs. 

Analyze randomized algorithms. Employ indicator random variables and linearity of expectation to 

perform the analyses. Recite analyses of algorithms that employ this method of analysis. 

Explain what amortized running time is and what it is good for. Describe the different methods of 

amortized analysis (aggregate analysis, accounting, potential method). Perform amortized analysis. 

Explain what competitive analysis is and to which situations it applies. Perform competitive 



analysis.Compare between different data structures. Pick an appropriate data structure for a design 

situation.Explain what an approximation algorithm is, and the benefit of using approximation 

algorithms. Be familiar with some approximation algorithms, including algorithms that are PTAS or 

FPTAS. Analyze the approximation factor of an algorithm. 

Textbook:The primary written reference for the course is: 

Buy at MIT Press Buy at Amazon Cormen, Thomas, Charles Leiserson, et al. Introduction to Algorithms. 

3rd ed. MIT Press, 2009. ISBN: 9780262033848. [Preview with Google Books] 

In previous semesters the course has used the first or second edition of this text. We will be using 

material and exercise numbering from the third edition, making earlier editions unsuitable as 

substitutes. 

compiler: 

Course Description:This module introduces topics include compiler design, lexical analysis, parsing, 

symbol tables, 

declaration and storage management, code generation, and optimization techniques. 

Course Objectives: 

The aim of this module is to show how to apply the theory of language translation introduced in the 

prerequisite courses to build compilers and interpreters. It covers the building of translators both 

from scratch and using compiler generators. In the process, the module also identifies and explores 

the main issues of the design of translators. 

The construction of a compiler/interpreter for a small language is a necessary component of this 

module, so students can obtain the necessary skills. 

Course Components: 

• Introduction to Compilers 

• Lexical Analysis 

• Syntax Analysis 

• Parsers Implementation 

• Semantic Analysis 

• Intermediate Representation, code generation 



• Code generation and Code optimization 

• Error Detection and Recovery 

• Error Repair, Compiler Implementation  
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• Compiler design options and examples: C Compilers 

• C++, Java, and YACC Compilers 

Text book: 

Title: Compilers Principles, Techniques and Tools 

Author(s)/Editor(s): Alfred V. Aho, Ravi Sethi and Jeffry D. Ulman 

Publisher: Addison Wesley Longman, 1986 

ISBN: 0- 201- 10088- 6 

In addition to the above, the students will be provided with handouts by the lecturer.  

 

foundation of logic and set theory: 

Description:Examines the logical foundations of concepts used throughout mathematics, such as order 

and equivalence relations, number and continuity. The use of infinity in mathematical arguments is 

investigated and implicit assumptions about infinite sets are exposed. Notions of infinity are formulated 

precisely and it is shown how infinite sets may be counted and compared in size. It is seen that, even in 

something as basic as set theory, 'truth' is not absolute. 

Learning outcomes:On successful completion of the course students will be able to: 

1. Learn about the logical foundations of such mathematical concepts as number, continuity and set 

2. Gain an appreciation of the usefulness and limitations of the development of theories from axioms 

3. Understand the concept of infinity and its role in mathematics. 

Content:The need for a rigorous treatment of the infinite in mathematics 

The Zermelo-Fraenkel Axioms 

Order 

Ordinal and cardinal numbers 



Transfinite induction 

The Axiom of Choice 

The Continuum Hypothesis. 

Assumed knowledge 

MATH2320 or MATH2330 

Assessment items:Written Assignment: Assignments 

In Term Test: Mid Semester Test 

Formal Examination: Examination 

 

 Linear Optimization: 

Course Description 

Linear optimization (or linear programming, LP) is the fundamental branch of optimization, with 

applications to many areas including life sciences, computer science, defense, finance, 

telecommunications, transportation, etc. Other types of optimization typically use LP as the underlying 

model. This course will provide an integrated view of the theory, solution techniques, and applications 

of linear optimization. There will be a fair bit of emphasis on theorems and their proofs. The treatment 

of most topics will begin with a geometric point of view, followed by the development of the solution 

techniques (algorithms), which are described using linear algebra. A background in linear algebra and 

multivariate calculus is assumed. Topics covered include linear programming formulations, geometry of 

linear programming, the simplex method, duality, sensitivity analysis, interior point methods, and 

integer programming basics. Apart from problems involving proofs, the student will use Octave (or 

Matlab) or another programming language (e.g., Python) for implementing some of the computations 

and algorithms. A state-of-the-art modeling software such as AMPL will also be introduced for solving 

problems modeling real life situations. 

 

Foundations of Algebra: 

Foundations of Algebra is a first year high school mathematics course option for students who have 

completed 

mathematics in grades 6 – 8 yet will need substantial support to bolster success in high school 

mathematics. The 

course is aimed at students who have reported low standardized test performance in prior grades 



and/or have 

demonstrated significant difficulties in previous mathematics classes. 

Foundations of Algebra will provide many opportunities to revisit and expand the understanding of 

foundational algebra concepts, will employ diagnostic means to offer focused interventions, and will 

incorporate 

varied instructional strategies to prepare students for required high school mathematics courses. The 

course will 

emphasize both algebra and numeracy in a variety of contexts including number sense, proportional 

reasoning, 

quantitative reasoning with functions, and solving equations and inequalities. 

Instruction and assessment should include the appropriate use of manipulatives and technology. 

Mathematics 

concepts should be represented in multiple ways, such as concrete/pictorial, verbal/written, 

numeric/data-based, 

graphical, and symbolic. Concepts should be introduced and used, where appropriate, in the context of 

realistic 

experiences. 

The Standards for Mathematical Practice will provide the foundation for instruction and assessment. 

The content 

standards are an amalgamation of mathematical standards addressed in grades 3 through high school. 

The 

standards from which the course standards are drawn are identified for reference.  

 

Coding theory: 

Course Description:This course introduces the theory of error-correcting codes to computer scientists. 

This theory, dating back to the works of Shannon and Hamming from the late 40's, overflows with 

theorems, techniques, and notions of interest to theoretical computer scientists. The course will focus 

on results of asymptotic and algorithmic significance. Principal topics include: 

 

Construction and existence results for error-correcting codes. 



Limitations on the combinatorial performance of error-correcting codes. 

Decoding algorithms. 

Applications in computer science. 

 

 Computer Logic Circuits 

COURSE DESCRIPTION:This course provides the student with a foundation in the fundamentals of digital 

logic design and 

computer logic circuits. Both combinational and sequential logic circuits are covered in this course. The 

emphasis is on the use of Boolean algebra and basic logic gates to build cost effective complex logic 

circuits. Topics include: Number systems, Binary arithmetic, Codes, Logic gates, Boolean algebra and 

simplifications, Half adders, Full adders, Decoders, Encoders, Multiplexers, Latches, Flip-Flops, 

Counters, Shift Registers, Memory circuits, and ALU (Arithmetic and Logic Unit). 

COURSE OBJECTIVES: 

After completing the course, the student will be able to: 

1. understand number systems, codes, and binary arithmetic, 

2. apply Boolean algebra to logic design, 

3. produce the truth table, timing diagram and gate design of logic functions, 

4. simplify logic functions for cost-effective implementation, 

5. build and trace the logic of circuits composed of simple gates, 

6. describe the behavior of the following circuits: Half Adder, Full Adder, Decoder, Encoder, 

Multiplexer, Latches, Flip-Flops, Registers, Counters, and Memory, 

7. understand the structure of an ALU, and trace the logic of simple instruction execution, 

8. write simple programs in Verilog language to describe simple logic circuits. 

MAJOR TOPICS: 

1. Introduction to Computer Logic Circuits 

2. Number Systems, Binary Arithmetic, and Codes 



3. Boolean algebra and Logic Gates 

4. The Karnaugh Map and Logic Simplifications 

5. Combinational Logic Circuits 

a. Half Adders and Full Adders 

b. Comparators 

c. Encoders and Decoders 

d. Code Conversions 

e. Multiplexers and De-multiplexers 

6. Latches and Flip-Flops 

7. Counters 

8. Shift Registers 

9. Memory Circuits 

10. Arithmetic and Logic Unit 

11. Hardware Description Language (Verilog)  

 

Data Mining:  

Brief Course Description:Data mining, or knowledge discovery in databases, has during the last few years 

emerged as one of the most exciting fields in Computer Science. Data mining aims at finding useful 

regularities in large data sets. Interest in the field is motivated by the growth of computerized data 

collections which are routinely kept by many organizations and commercial enterprises, and by the high 

potential value of patterns discovered in those collections. For instance, bar code readers at 

supermarkets produce extensive amounts of data about purchases. An analysis of this data can reveal 

previously unknown, yet useful information about the shopping behavior of the customers. 

Data mining refers to a set of techniques that have been designed to efficiently find interesting pieces of 

information or knowledge in large amounts of data. Association rules, for instance, are a class of 

patterns that tell which products tend to be purchased together. There is currently a large commercial 

interest in the area, both for the development of data mining software and for the offering of consulting 

services on data mining, with a market for the former estimated at over 5 billion U.S. dollars. 

 



In this course we explore how this interdisciplinary field brings together techniques from databases, 

statistics, machine learning, and information retrieval. We will discuss the main data mining methods 

currently used, including data warehousing and data cleaning, clustering, classification, association rules 

mining, query flocks, text indexing and seaching algorithms, how search engines rank pages, and recent 

techniques for web mining. Designing algorithms for these tasks is difficult because the input data sets 

are very large, and the tasks may be very complex. One of the main focuses in the field is the integration 

of these algorithms with relational databases and the mining of information from semi-structured data, 

and we will examine the additional complications that come up in this case. 

 

Artificial intelligence: 

Course description:Artificial intelligence (AI) is a research field that studies how to realize the intelligent 

human behaviors on a computer. The ultimate goal of AI is to make a computer that can learn, plan, and 

solve problems autonomously. Although AI has been studied for more than half a century, we still 

cannot make a computer that is as intelligent as a human in all aspects. However, we do have many 

successful applications. In some cases, the computer equipped with AI technology can be even more 

intelligent than us. The Deep Blue system which defeated the world chess champion is a well-know 

example. 

The main research topics in AI include: problem solving, reasoning, planning, natural language 

understanding, computer vision, automatic programming, machine learning, and so on. Of course, these 

topics are closely related with each other. For example, the knowledge acquired through learning can be 

used both for problem solving and for reasoning. In fact, the skill for problem solving itself should be 

acquired through learning. Also, methods for problem solving are useful both for reasoning and 

planning. Further, both natural language understanding and computer vision can be solved using 

methods developed in the field of pattern recognition. 

In this course, we will study the most fundamental knowledge for understanding AI. We will introduce 

some basic search algorithms for problem solving; knowledge representation and reasoning; pattern 

recognition; fuzzy logic; and neural networks. 

 

Principles of Software Design: 

About this course: Solve real world problems with Java using multiple classes. Learn how to create 

programming solutions that scale using Java interfaces. Recognize that software engineering is more 

than writing code - it also involves logical thinking and design. By the end of this course you will have 

written a program that analyzes and sorts earthquake data, and developed a predictive text generator. 

After completing this course, you will be able to: 

1. Use sorting appropriately in solving problems; 



2. Develop classes that implement the Comparable interface; 

3. Use timing data to analyze empirical performance; 

4. Break problems into multiple classes, each with their own methods; 

5. Determine if a class from the Java API can be used in solving a particular problem; 

6. Implement programming solutions using multiple approaches and recognize tradeoffs; 

7. Use object-oriented concepts including interfaces and abstract classes when developing programs; 

8. Appropriately hide implementation decisions so they are not visible in public methods; and 

9. Recognize the limitations of algorithms and Java programs in solving problems. 

10. Recognize standard Java classes and idioms including exception-handling, static methods, java.net, 

and java.io packages. 


