Course	Credits	Description	Prerequisite or Concurrent
1-Mathematics I	3	(Duration: 48 hours)	-
		Cartesian coordinates; polar coordinates; complex	
		numbers; addition, product, root & geometrical	
		representation of complex numbers; polar	
		representation of complex numbers; function; functions	
		algebra; limit and relevant theorems; infinite limit and	
		limit in infinite; left-hand and right-hand limit;	
		connectivity; derivative; derivation formula; inverse	
		function and its derivative; trigonometric functions	
		derivative and their inverse functions; Rolle's theorem;	
		mean theorem; Taylor expansion; geometrical and	
		physical applications of derivative; curves and	
		acceleration in polar coordinates; application of	
		derivative in approximation of equations roots;	
		definition of integral of continuous functions and	
		piecewise continuous; basic theorems of differential &	
		integral arithmetic; primitive function; approximate	
		methods of integral estimate; application of integral in	
		computation of area, volume, length of curve, moment,	
		center of gravity and labor (in Cartesian and polar	
		coordinates); logarithm and exponential function and	
		their derivative; hyperbolic functions; integration	
		methods such as change of variable, component and	
		decomposition of fractions; transform of special	
		variables of sequence and numerical series and relevant	
		theorems. Power series and Taylor theorem and	
		recursive functions.	
2-Mathematics II	3	(Duration: 48 hours)	1
		Analytic geometry in Euclidean plane and Euclidean	
		space, Vector-Valued functions, elementary theory of	
		curves and surfaces, Ferenet-Serret apparatus,	
		multivariable functions (limit and continuity, partial	
		derivative), polar, spherical and cylindrical coordinates,	
		multiple integration, green and stokes theorems,	
		elementary account of differential forms.	

2 Differential Equations	3	(Dynation, 19 hours)	2
3-Differential Equations	3	(Duration: 48 hours)	2
		Nature of differential equations and their solution,	
		family of graphs and vertical routes, physical patterns,	
		separable equation, first order linear differential	
		equation, homogeneous equation, second order linear	
		equation, homogenous equation with fixed constants,	
		method of indefinite constants, method of changing	
		parameters, application of second order equations in	
		physics and mechanics, solution of differential equation	
		with series, Bessel and Gamma functions, Legendre	
		polynomial, an introduction to differential equations	
		set, Laplace transform and its application in solving	
		differential equations.	
4-Numerical	2	(Duration: 32 hours)	3
Computations		Approximations and errors, instability in numerical	8
		computations and methods of their prevention. Curve	
		fitting and interpolation: interpolating criteria, least-	
		squares regression, Lagrange interpolating polynomial	
		with one and two variables. Cubic spline interpolation.	
		Newton interpolating polynomial. Taylor approximation.	
		Liner and polynomial regressions. Other common	
		regression curves. Chebyshev approximation (minimax	
		polynomial); numerical differentiation and integration:	
		numerical integration by trapezoidal rules and Simpson	
		rules. Gauss-Legendre, Gauss-Chebyshev and Gauss-	
		Hermite quadratures. Romberg method and Richardson	
		extrapolation. Numerical differentiation; roots of	
		algebraic and transcendent equations: bisection method,	
		substitution method, Newton methods for real and	
		complex variables; systems of linear algebraic equations:	
		direct methods (Gauss elimination and LU	
		decomposition). Iterative methods (Jacobi method and	
		Gauss-Seidel method); solving methods for nonlinear	
		systems: Jacobi method, generalized Newton method,	
		Newton-Rephson method; mathematical modeling of	
		engineering problems: Physical system, classification of	
		problems, system analysis (topological modeling,	
		systems with concentered parameters and types of	
		equations, systems with distributed parameters and types	
		of equations); Integration of first-order Ordinary	
	I		

		Differential Equation(ODE) with initial condition using Runge-Kutta methods of 1st to 4th order. Predictor- corrector methods. Runge-Kutta methods for first order ODE systems with initial condition. Finite difference method for ODE with boundary conditions; numerical solving of elliptic equations, and parabolic equations (explicit and implicit schemes; Thomas algorithm) Usign MATLAB for course project.	
5-Physics I	3	(Duration: 48 hours) Measurement, Motion in two and three dimensions, forces and Newton's laws and its application, momentum, systems of particles, rotational kinetics, rotational dynamics, angular momentum, work and kinetic energy, potential energy, conservation of energy, gravitation, temperature, molecular properties of gasses, first law of thermodynamics, entropy and second law of thermodynamics.	1
6-Basic Physics I Lab.	1	(Duration: 32 hours) Practical Experiments Related to "Physics I" Course	5
7- Civil Engineering statistics and Probabilities	2	(Duration: 32 hours) Statistical decision theory and its application in civil engineering. Identification and modeling of non- deterministic problems in civil engineering and the treatment thereof relative to engineering design and decision making. Statistical reliability concepts.	1
8-Computer Programming	3	(Duration: 48 hours) Introducing organization and main parts of computer, machine language and assembly, numeric and non- numeric data representation, algorithms and sub- algorithms and flowchart, basic concepts such as frequency, familiarity with C & C++ programming language: constants and variables, computational and logical phrases, different types of instructions, different types of conditional operations loops, vectors and matrices, subprograms, input and output instructions, common algorithms such as methods of search and arrangement, practical examples of programming.	Second semester
9- Engineering Drawing	2	Using C language for course project. (Duration: 48 hours)1632	

10- Surveying and Operations	2	Getting familiar with general principle of technical and building drawing, typical plans and foundation and beams plan, different types of perspective, facing and sections. (Duration: 48 hours)1632 Horizontal and vertical distance measurement, angles and direction, traverses, errors, control and construction surveys, coordinate systems, land records, and coordinate geometry, office and field practice.	1
11- Construction Material and Lab.	2	(Duration: 40 hours)2416 Introductory-level course in materials engineering to familiarize students with relationships between processing, structure and properties of materials used to manufacture devices. General treatment of physical and mechanical properties and engineering behavior of metallic and nonmetallic materials. Steel, aluminum, aggregates, portland cement concrete, bituminous materials, asphalt concrete, wood. Laboratory testing, instrumentation, and investigation into macro-behavior.	28
12- Concrete Technology	2	(Duration: 32 hours) Properties and types of cements and aggregates, hydration, mix design, properties of fresh and hardened concrete.	18 11
13- Concrete Technology Lab.	1	(Duration: 32 hours)0032 Practical Experiments Related to " Concrete Technology " Course.	12
14-Statics	3	(Duration: 48 hours) Revision on scalar and vector quantities, Newton's laws, systems of units, force, moment of force, couple. Various force systems and their resultants, free body diagrams, equilibrium of rigid bodies and their equations of equilibrium and reactions determination, static indeterminacy and partial constraints. 1-Structures Trusses (method of joints, method of sections), frames and machines. 2-Distributed forces	1

		Centers of gravity, mass, volume of rigid bodies, composite volumes, areas and lines and their centers. 3-Beams Equations of axial and shear forces and bending moment and their diagrams for the beams under concentrated and distributed loads. 4-Cables Flexible cables under concentrated and distributed transverse loads.Parabolic cables, catenary cables. 5-Area moments of inertia Definitions of rectangular and polar moments of area, radius of gyration, product of area. Transfer of axes, rotation of axes, principal axes, Mohr's circle. 6-Friction Dry friction laws, friction angle, friction in wedges, screws, bearings, dry disk clutches and belts. Rolling resistance. 7-Virtul work Method of virtual work and its application in machines.	
15-Dynamics	3	Method of potential energy.(Duration: 48 hours)Fundamental course on the analysis of the equilibrium and dynamic behavior of mechanical systems.1. Draw the appropriate free-body diagram for each problem, including linear and rotational accelerations.2. Readily and reliably perform dot and cross products on vectors3. Know the difference between kinematics problems and kinetics problems.4. Identify the most direct approach to solving dynamics problems.5. Solve both linear and rotational kinematics problems, using linear, planar and 3-D solution techniques, where appropriate.	14

		 6. Solve kinetics problems by combining Newton's Law and kinematic equations, methodically accounting for all forces, and accelerations. 7. Solve kinetics problems using the principle of work & energy. 8. Solve kinetics problems using the principle of impulse & momentum. 9. Identify kinetics problems for which energy or 	
		momentum is	
		conserved, and solve them appropriately.	
		10. Solve dynamics problems using both algebraic and vector techniques.	
16-Strength of Materials I	3	(Duration: 48 hours)	14
	-	1- Concept of Stress	
		Definition of stress, types, stress vector, stress tensor	
		2- Stress Analysis in Members Under Axial Loads	
		normal stress, stress on an oblique plane, shearing stress,	
		safety factor, ultimate and allowable	
		stresses, an introduction to yield strength of materials,	
		tensile test, Saint-Venant's principle,	
		stress concentration, residual stress, stress in joints (bolt,	
		pin and rivet),.	
		3- Strain and Deformations in Members under Axial	
		Loadings Definition of strain, stress-strain relations, Hooke's law	
		for axial loading, stress-strain	
		diagrams for different materials, deformation under axial	
		loading, thermal strain, use of	
		deformations compatibility equation for solving different	
		problems, lateral strain, Poisson's	
		ratio, generalized Hooke's law for isotropic materials,	
		volumetric strain and Bulk Modulus,	
		shear strain, design consideration and energy relation in	
		axially loaded members.	
		4- Torsion	
		Concept and basic hypothesis, torsional stress and angle	
		of twist in circular shafts, torsion in	
		open and closed thin-walled members, introduction to	
		torsion of noncircular members, stress	

]
		concentration, allowable shear stress, indeterminate	
		torsional system and compatibility	
		equation, stress concentration, power transmission,	
		shaft's coupling and energy relation in	
		torsionally loaded shafts.	
		5- Pure Bending	
		Concept and basic hypotheses, moment and curvature	
		relation, bending stress, bending of	
		members made of several materials, bending in beams	
		under eccentric and unsymmetrical	
		loads, general case of eccentric axial loading, kern of	
		cross-section, design consideration, stress	
		concentration and energy relation in beams under pure	
		bending.	
		6- Shearing and Compound Stresses in Beams	
		Concept and basic hypothesis, shear flow, shearing stress	
		in beams and its distribution,	
		shearing stress in circular shaft, thin-walled members	
		such as wide flange, angle and channel	
		shape, design consideration, stresses under combined	
		loadings and energy relation due to	
		shearing stress.	
		7- Transformations of Stress and Strain	
		Plane stress and plane strain, stress component on	
		oblique plane, principal stresses, maximum	
		shearing stress, Mohr's circle for stress and its drawing	
		method, strain components on oblique	
		plane, principal strains, Mohr's circle for strain,	
		measurements of strain, strain Rosette.	
		8- Deflection of Beams	
		Deflection relation in beams, deflection determination	
		with integration method, Macaulay's	
		method, superposition method, boundary conditions.	
		9- Thin-Walled Vessels	
17- Architectural Design	2	(Duration: 32 hours)	10
and Urban development	_	In order to students become familiar with architecture	
		theory and recognition of different operations in	
		architecture. Cooperation procedure between civil	
		engineers and architects. Description of operations in	
		architecture.	

18-Strenght of Materials Lab.	1	 (Duration: 32 hours)0032 1. Hook's Law, Deflection of Cantilever and Simply Supported Beams and Betti- Maxwell's Reciprocity Theorem. 2. Bending Moment and Shearing Force in Beams 3. Hardness and Impact in different Temperature 4. Introduction to Strain Gauges 5. Uniaxial Tension 6. Column Buckling 7. Plastic Torsion in different Materials 8. Fatigue in Beams 9. Leaf and Coil Springs Behavior 10. Stress Distribution in an Angle Under Eccentric Loading 	16
19- Structures Analysis I	3	(Duration: 48 hours) Analysis of trusses, beams and frames. Classical methods and analysis with microcomputers. Displacements, shear and bending moments, influence lines. Course Information 1-structural sys. : statistical definite and indefinite structures 2-structural displacement calculations 3-energy method and its application in structural displacement calculations 4-vertual work method 5-slope deflection method 6-momets distribution method 7-influence lines of statistical definite and indefinite structures	16
20- Structures Analysis II	3	(Duration: 48 hours) Approximate analysis of structures including trusses and multistory frames. Influence lines, cables and arches. Principles of limit analysis for structures and structural elements. Stiffness method, flexibility method, influence of temperature & displacement & bearing rotation , symmetry, matrix algebra.	19 4
21-Fluid Mechanics	3	(Duration: 48 hours)	15

		 Fundamental Concepts of Fluids Fluid Properties Fluid Statics and Pressure Measurements Manometry Hydrostatics Forces Solid-like motion Fluid Kinematics and Reynolds Transport Theorem Conservation of Mass, Momentum and Energy for Control Volume Integral form of Continuity Linear Momentum Angular Momentum Conservation of Energy The Bernoulli Equation and Applications Flow measurements based on Bernoulli equation Dimensional Analysis and Similitude Viscous Flow in Pipes and Ducts, Reynolds number, Laminar flow Turbulent Flow Flow Measurements 	
22- Reinforced Concrete Structures I	3	(Duration: 48 hours) This course discusses the fundamental principles and behavior of reinforced concrete under different types of loading. By the end of this course, students will be exposed to methods for analyzing and designing the following reinforced concrete members T shape beams, rectangular beams, reinforcement bars, Development Length – continued Shear in Beams, Serviceability, Cracks Control Development Lengths	19 13
23- Reinforced Concrete Structures II	3	(Duration: 48 hours) This course discusses the fundamental principles and behavior of reinforced concrete under different types of loading. By the end of this course, students will be exposed to methods for analyzing and designing the following reinforced concrete members One-way Slabs, Short columns (using interaction diagram), Slender/long columns (in braced frames), Isolated and Continuous Footings.	22

	1	(Duration, 22 hours)0022	23
24- Reinforced concrete	1	(Duration: 32 hours)0032	20
project		Application of concrete structures principles in a	
		concrete structure.	
		A project base on an architecture plan define for student.	
		With usage of loading code and reinforce concrete code,	
		different methods of 3D and 2D analysis, foundation	
		design, floor and beams and column design.	
		The final written report and defense is required.	
25- Steel Structures I	3	(Duration: 48 hours)	19
		Factors influencing strength and serviceability of steel	
		structures; LRFD limit state design procedures. Use of	
		theories of plasticity and stability in development of	
		design methods and specifications, bolted and welded	
		connections, temperature effects, and affect of different	
		fabrication methods on behavior of structure.	
26- Steel Structures II	2	(Duration: 32 hours)	25
		Introduction to the design of structural elements found in	
		steel buildings, in particular the design of steel	
		connections.	
		Bolted Connections, Welded Connections, rigid	
		connections, hinge type connection, base plates design,	
		composite floor design.	
27- Steel Project	1	(Duration: 32 hours)0032	26
27 Steer Hojeet	1	Application of steel structures principles in a steel	20
		structure.	20
		Project should be done according following steps:	
		1- plan selection 2-vertical and lateral loads resistant	
		-	
		system selection with economic considerations 3-dead	
		loads and live loads calculations 4-primery analysis and	
		design 5- analysis and design with software and	
		comparison with manual one 6-design of structure and	
		connections and foundation 7- creation of executive	
		maps with suitable scale	
28- Engineering Geology	2	(Duration: 32 hours)	-
		General overview of engineering geology and its	
		importance to civil engineers. Topics include geologic	
		processes, hazards, subsurface investigations,	
		classification of geologic materials, data synthesis, and	
		natural construction materials.	
29- Soil Mechanics	3	(Duration: 48 hours)	16

30- Soil Mechanics Lab.	1	In this course, we will discuss the fundamental physical and mechanical properties of soils and use them in the design of simple foundation and earth retaining systems. We will use certain fundamental principles of solid mechanics and fluid mechanics to describe the mechanical behavior of soils. (Duration: 32 hours)0032 Conduct and interpret soil test results. Test include water content, particle size, permeability, consolidation and shear strength.	28
31- Foundation Engineering	2	(Duration: 48 hours) Settlement and bearing capacity of shallow and deep foundations; beam on elastic foundation; design of footings and pile foundations; foundations on metastable soils; the use of computer codes for foundation problems.	29 22
32- Hydraulic and Lab.	3	(Duration: 64 hours) 3232 Open channel flow, natural streams and waterways, hydrologic analysis and design, pressure flow, analysis and design of pipe networks and pump systems.	21
33- Principles of Earthquake and Wind	3	(Duration: 48 hours) Earthquake mechanism and ground shaking, response spectra, linear elastic methods for prediction of behavior, displacement prediction methods for inelastically behaving structures, modeling and solution schemes, earthquake design philosophy, capacity design. Reinforced concrete, steel, and base-isolated structures. Response of single and multi degree-of-freedom systems due to dynamic forces. Direct integration of equations of motion. Response spectrum analysis. Application to earthquake loading. Systems with distributed mass and elasticity	20
33- Executive Building Methods	2	(Duration: 48 hours)1632 Methods of construction, primarily buildings. Construction types: light and heavy wood; steel; plain, reinforced, and prestressed concrete; masonry. Foundations; associated details of frames, walls, roofs, floors, openings, finishes. Disasters, failures, and their causes. Industrialization of the building process.	17 23 26
34- Road construction	2	(Duration: 32 hours)	١.

		To getting familiar with highway design principles and their usage in design and implementation of infrastructure of roads. Roads studies, principles of navigation on topographical maps, earthworks, road's geometry, implementation of geometry plan, horizontal path of road design, vertical path design, drainage.	۲۹
35- Road construction Project	1	(Duration: 32 hours)0032 In this project a 1:5000 or 1:10000 scaled map with initial traffic information given to students in group and all of the required calculations and design should be done according road's national regulations and codes. On a specified date it should be submitted with a complete detail interpreted report. The project needs defense.	34
36- Road Pavement	2	(Duration: 32 hours) Design principles of flexible and rigid pavements; HMA mixture design, equipment and construction; and application of life cycle cost analysis (LCCA) in pavement engineering. Includes laboratory sessions for aggregate testing and Superpave mix design.	11 34
37- Measurement & Cost Estimation	1	(Duration: 24 hours)0816 Develop an enhanced understanding of quantity take-off and cost estimating of construction resources including materials, labor, and equipment. Skills and knowledge of cost estimating will provide preparation for builders and designers to contribute to construction firms, project management consultants, and owners upon graduation. Topics include: types of cost estimates; budget estimates; preconstruction services estimates; quantity take-off; self-performed estimates; subcontractor work estimates; and bid preparation.	17
38- Environmental Engineering	2	(Duration: 32 hours) To getting familiar with environment Eng. and it aspects. Description of environment and its applications, getting to know: the environment's challenges in modern world, ecology foundations, water resources and relevant pollutions, physical & chemical and biologic properties and available standards, water treatment process, wastewater treatment process, solid hazardous material's	Second semester

		management, air pollution and its control methods, sound	
		pollution and its control methods.	
39- National Building	3	(Duration: 48 hours)	Seventh
Regulations		Getting to know with laws and 20's national building	semester
		regulations, specially 6 th code (building, forces and	
		loading)	
40- Training	2	(Duration: 16 hours)	third year
		Students have to work in a civil engineering related site	
		in a field related to their interests or project for 300	
		hours.	
		The project should be practical and in implementation	
		phase.	
		Training report needed and evaluated by advising	
		professor.	
41- Civil engineering	2	(Duration: 32 hours)	-
specialized English		English reading texts in Civil Engineering	
42- Specialized Civil	3	(Duration: 48 hours)	Seventh
Work project		In this course a research topic related to civil engineering	semester
		is defined to student and the student should do his	
		research in a specified date (maximum 12 months) under	
		supervision of related professor. Finally a written report	
		and oral presentation to the public should be provided	
		with presence of at least one referee.	
43- Computer	2	(Duration: 32 hours)	4
Application in		Introduction the available software related to structure	20
Engineering		design, foundation and geotechnical studies.	
		Modeling, analysis, linear and non-linear design.	
		Making executive maps.	
44- System Engineering	2	(Duration: 32 hours)	2
		It focuses on defining customer needs and required	7
		functionality early in the development cycle,	
		documenting requirements, then proceeding with design	
		synthesis and system validation while considering the	
		complete problem including operations, performance,	
		test, manufacturing, cost, and schedule. This subject	
		emphasizes the links of systems engineering to	
		fundamentals of decision theory, statistics, and	
		optimization. It also introduces the most current,	
		commercially successful techniques for systems	
		engineering.	

45- fundamentals of GIS	2	(Duration: 32 hours)	Fifth
In civil engineering		GIS in civil engineering applications. Geographic and	semester
		spatial data types and acquiring considerations. Data	
		models and structures. Projections and transformations.	
		Attribute-based operation, spatial operations. Surfaces	
		and near neighbors. Training on Arc GIS software.	
46- Engineering	2	(Duration: 32 hours)	Fourth
Economics		Economics applied to planning, operations, maintenance,	semester
		and management problems; microeconomic and	
		macroeconomic theories; benefit-cost analysis; and the	
		effect of uncertainty. Presents the effect of tolls, parking	
		pricing, transit subsides, and other pricing and incentive	
		policies	
47- Welding Technology	2	(Duration: 48 hours)1632	25
and Inspection Technology		Safety issues and procedures of welding, different types	
		of welding methods and instruments, and power supplies.	
		Electric arc welding, creating electric arc, setting the	
		correct electrode gap, and electrode angles, oxidation	
		conditions. Basic weld joints: butt joint, lap joint, corner	
		joint, edge joint, and T-joint. Oxyacetylene welding.	
		An introduction to welding methods	
		1-Technical Safety Welding and cutting	
		2-Electric arc welding (SMAW)	
		3-SAW, 4-MAG-MIG, 5-GTAW, 6-RW	
48- Earthquake Resistant	2	(Duration: 32 hours)	20
Structures		Design of unreinforced masonry elements and	
		reinforced masonry elements, loads on break made	
		building, masonry reinforced sections under moment,	
		load-bearing walls, shear walls, retaining walls, frame	
		confined walls, structural connections, seismology	
		behavior of masonry building	
49- Water and Wastewater	3	(Duration: 64 hours)3232	Sixth
Engineering and Project		Hydrologic fundamentals of water demand and supply;	semester
		water and wastewater distribution; collection systems;	
		quality characterization; analytical methods for water	
		quality management.	
50- Dam Engineering	2	(Duration: 32 hours)	29
		Planning and design of dams in the context of	32
		hydropower development and. The course covers the	
		basics in dam engineering for civil engineers, including	

dam's concrete technology for dams, stability of dams, dam maintenance and relevant problems.51- Transportation2(Duration: 32 hours)7EngineeringStudies vehicular transportation fundamentals including vehicle dynamics, geometric design, traffic flow concepts, levels of service analysis, intelligent transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.1052- Photogrammetry2(Duration: 32 hours) transportation systems. Includes a review of relevant vehicle operating characteristics.1052- Photogrammetry2(Duration: 32 hours) the course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several common remote sensing applications studied.			concrete and embankment dams, soil mechanics for	
51- Transportation Engineering2(Duration: 32 hours)7Studies vehicular transportation fundamentals including vehicle dynamics, geometric design, traffic flow concepts, levels of service analysis, intelligent transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.752- Photogrammetry2(Duration: 32 hours) The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several7				
EngineeringStudies vehicular transportation fundamentals including vehicle dynamics, geometric design, traffic flow concepts, levels of service analysis, intelligent transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.3452- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several34			dam maintenance and relevant problems.	
SolutionVehicle dynamics, geometric design, traffic flow concepts, levels of service analysis, intelligent transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.1052- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several	51- Transportation	2	(Duration: 32 hours)	7
concepts, levels of service analysis, intelligent transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.1052- Photogrammetry2(Duration: 32 hours) The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several	Engineering		Studies vehicular transportation fundamentals including	34
transportation systems, travel demand prediction methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.52- Photogrammetry2(Duration: 32 hours)1052- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			vehicle dynamics, geometric design, traffic flow	
methods, freight logistics, and management of transportation systems. Includes a review of relevant vehicle operating characteristics.52- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			concepts, levels of service analysis, intelligent	
transportation systems. Includes a review of relevant vehicle operating characteristics.52- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			transportation systems, travel demand prediction	
52- Photogrammetry2(Duration: 32 hours)1052- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			methods, freight logistics, and management of	
52- Photogrammetry2(Duration: 32 hours)10The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			transportation systems. Includes a review of relevant	
The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			vehicle operating characteristics.	
The course includes the development of the technologies and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several	52- Photogrammetry	2	(Duration: 32 hours)	10
and covers fundamental concepts of photogrammetry and remote sensing. You will learn about these technologies by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			The course includes the development of the technologies	
by exploring examples for which they can be used. The typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several				
typical geometry of a photograph and the basic mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			remote sensing. You will learn about these technologies	
mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			by exploring examples for which they can be used. The	
mathematical formulations are introduced. The accuracy and precision of measurements will be explored. You will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			typical geometry of a photograph and the basic	
will investigate the differences between a map and a photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several				
photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			and precision of measurements will be explored. You	
photograph and the reasons for these differences are studied in detail. A typical satellite-based passive remote sensing system will be explored in detail and several			will investigate the differences between a map and a	
sensing system will be explored in detail and several			photograph and the reasons for these differences are	
			studied in detail. A typical satellite-based passive remote	
			sensing system will be explored in detail and several	
53-Foundation and 2 (Duration: 32 hours) Fifth	53- Foundation and	2	* * 1	Fifth
structure performing After excavation near structures and building it needs to semester	structure performing		After excavation near structures and building it needs to	semester
methods be a supporting structure or special method of excavation	methods		be a supporting structure or special method of excavation	
to prevent damages, may happen and cause damages, in				
adjacent structures or excavated site.				
54-Nailed soil and its 2 (Duration: 32 hours) Third year	54-Nailed soil and its	2	<i>y</i>	Third year
executive methods Compaction, preloading, vertical drains, grouting,	executive methods			5
admixture stabilization, thermal stabilization, soil			1 1 0 0 0	
reinforcement, geosynthetics; construction of				
embankments on soft clay, embankments on				
mechanically stabilized earth walls, hydraulic barriers;			-	
case studies.				